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LIE GROUPS OF VARIABLE CROSS-SECTION CHANNEL FLOW

JAMES D. MCHARDY, ELIAS D. CLARK, JOSEPH H. SCHMIDT, AND SCOTT D. RAMSEY

Abstract. This paper considers Lie groups of scaling transformations for the system of equa-
tions governing inviscid, compressible, quasi-one dimensional (quasi-1D) fluid flow in channels with
variable cross-section. We determine the coupling between the admissibility of the group transfor-
mations and the equation of state (EOS) model used to close the system as well as the spatial and
temporal dependence of the channel cross-section. The results presented extend prior group analysis
performed in Ovsiannikov [32] and Boyd et al. [8] on the equations of gas dynamics for 1D flow. In
the context of channel flow, the analysis in Ovsiannikov [32] and Boyd et al. [8] is only applicable
for a very limited scope of channels, namely for channels possessing planar, cylindrical and spherical
symmetry where the flow is truly 1D. To illustrate the extension achieved using the quasi-1D model,
we consider the classical Noh problem set up in a channel with a variable area cross-section. First,
a new set of canonical variables are derived using the admissible scaling transformations. Then, by
re-expressing the governing equations of motion in terms of the new variables, a solvable system of
ordinary differential equations (ODEs) is acquired. The resulting explicit solutions of the problem
extend the previous results of Ramsey et al. [33] to solutions of the Noh problem for quasi-1D flow.

1. Introduction

Prior to the widespread implementation of computational fluid dynamics codes to aid in the
understanding and prediction of the evolution of phenomena in fluid flow, reliance on approximate
or exact solutions to simple models was paramount. In modern fluid dynamics, such solutions are
still of great interest and importance, usually not because of their accuracy, but because they provide
a benchmark to test the complex numerical methods against. For compressible fluids, smooth, one-
dimensional flow is modelled using the equations of motion pertaining to mass, momentum and
energy conservation of a control volume. In a few special cases, namely flows possessing planar,
cylindrical and spherical symmetry, the fluid motion can be prescribed exactly using equations
possessing only one spatial coordinate. In the context of fluid flow in channels, these special cases
correspond to flow in constant cross-sectional area channels, wedge shaped channels and conical
channels, respectively. In the latter two cases, the cross-sectional areas exhibit linear and quadratic
spatial dependence, respectively.

Thanks to the work of Bernoulli [4, 5], the dynamics of additional and more complex multi-
dimensional flow in channels may also be prescribed, if only approximately, using just one spatial
dimension. This extension is achieved by generalising the dependence of the channel cross section
on space and time while assuming the state of the flow remains uniform over the cross-section.
Fluid flow successfully described in this manner is referred to as quasi-one dimensional (quasi-1D).

Although the quasi-1D approximation has limitations, use of the model is applicable to a variety
of problems. For example, it is effective in cases where the streamlines of multi-dimensional flows
are known apriori and the flow between the streamlines can be modelled using a streamtube with
slowly varying cross-sectional area. Alternatively, as discussed in Thompson [41, p.202], it is useful
for understanding acoustic wave propagation in non-uniform media, i.e., media with variations
in material properties such as temperature, energy or density like those found in atmospheric
or oceanic problems involving stratified flow fields. Such acoustic propagation problems can be
analyzed using the methods of geometric acoustics which involves the construction of ray tubes.
Along the ray tubes the quasi-1D model serves as a good approximation.
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Furthermore, explicit solutions to simple problems involving the evolution of shockwaves in
channels can also be derived within the quasi-1D approximation. Real world applications coupled
to shockwave phenomena in channels include the design of underground mining or explosive storage
tunnel networks (e.g., safety depends on effective shockwave attenuation) [17,18,43], the design of
gas turbines and jet engines [23,38], the design of exhaust systems connected to combustion engines
and finally the ballistic science of firearms [16]. Rudinger [35] gives many additional examples in
his book on schemes for the numerical simulation of non-steady channel flow. Given the endless
possibilities for channel configurations, the phenomenology and dynamics of shockwaves in channels
can be incredibly complex. Heilig [21] provides many visually illustrative experimental examples.
For such complex problems, reliance on numerical simulation is often essential.

Verification of computational fluid dynamics solvers often involves checking the ability of the
solver to accurately compute the solutions to a series of test problems for which explicit solutions
have been found. The solutions to simple problems derived within the quasi-1D approximation may
serve as the basis for a series of test problems. Although this may sound straight forward, obtaining
explicit solutions is often extremely challenging because of the difficulty associated with solving the
non-linear system of partial differential equations (PDEs) governing fluid flow. Within the context
of shockwaves in channels, Chester [10, 11], Chisnell [12] and Whitham [42] discuss approximate,
yet explicit, solutions for channels with discontinuous cross-sectional area changes and Guderley
[19] presents iterative solution techniques relying on the method of characteristics for channels of
variable cross-sectional area. A finite number of explicit solutions have also been obtained for the
special planar, cylindrical and spherical geometry cases where the flow is exactly 1D. Examples
include the Sedov-Taylor-von Neuman point explosion solution [6, 24, 36, 39, 40], the converging
Guderley solution [20] and the Noh solution [29]. These example solutions are self-similar in nature
and can be derived using dimensional arguments to identify a similarity variable which is then
used to simplify the system of equations. Alternatively, these solutions can be derived within
the structured framework associated with symmetry analysis (or Lie group analysis). Hutchens
[22], Ramsey [34], and Axford [3] and Ramsey et al. [33], provide examples of this for the Sedov,
Guderley, and Noh problems, respectively.

Special solutions known as group-invariant solutions are obtained upon the application of symme-
try analysis methods [31, Chapter 3]. Contained within the broad class of group-invariant solutions
are solutions of the self-similar kind derivable using dimensional analysis which correspond to scal-
ing (stretching) group transformations. In this paper, Lie groups of scaling transformations of the
system of non-linear partial differential equations (PDEs) governing quasi-1D, compressible, invis-
cid flow through channels with variable cross-sectional area are investigated. From the analysis, the
admissibility of the transformations is coupled to the form of the cross-sectional area and the EOS
closing the system. In terms of scaling transformations, this work generalizes the results of Ovsian-
nikov [32] and Boyd et al. [8] which previously connected the EOS to the admissible symmetries
of the 1D equations of compressible gas dynamics.

The structure of the paper is as follows. In Section 2, the model system of equations governing
quasi-1D fluid flow through a channel is introduced. A detailed derivation of the system is provided
in Appendix A. Section 3 then outlines the symmetry analysis method applied to the equations.
This includes the specification of a system of determining equations which in turn define a crite-
rion for identifying admissible symmetry transformations. A worked example solution for the first
determining equation, constructed using mass conservation, is provided in Appendix C. Following
this, the analysis focuses on a subgroup of scaling transformations and restrictions on the possible
cross-sectional area function and the EOS model for the attainment of scaling solutions are dis-
cussed. At the end of Section 3, the governing system is simplified through the method of symmetry
reduction and in Section 4 a solution to the classical Noh problem is determined by solving the
reduced system subject to a particular function for the channel cross-section.
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2. Conservation equations for channel flow

The following system of PDEs provides a simplistic model governing quasi-1D, unsteady, ideal,
fluid flow through a channel in the absence of body forces

∂

∂t
(ρA) +

∂

∂r
(ρAu) = 0, (2.1a)

∂

∂t
(ρAu) +

∂

∂r

(
ρAu2 + pA

)
= p

∂A

∂r
, (2.1b)

∂

∂t

(
ρAe+

ρAu2

2

)
+

∂

∂r

(
ρAue+

ρAu3

2
+ pAu

)
= −p∂A

∂t
, (2.1c)

where “ideal” refers to the neglect of heat conduction and viscous effects, and r, t, ρ, u, p, e, and
A denote the spatial position along the channel, time, density, velocity, pressure, specific internal
energy, and the cross-sectional area of the channel, respectively. Each equation in System (2.1) is
derived by accounting for the change in mass, momentum and total energy, respectively within a
time varying control volume such as the one pictured in Figure 1. A derivation of the equations is
provided in Appendix A.

Figure 1. Flow though a control volume in a channel

As written, System (2.1) is comprised of three equations with five unknown variables and is
therefore underdetermined. In order to close the system, specification of an auxiliary function
describing the evolution of the cross-sectional area in space and time, A := A(r, t), as well as a
material EOS relating specific internal energy to density and pressure, e := e(ρ, p), are required. In
the subsequent discussion, the auxiliary functions are left unspecified for as long as possible. Only
in the worked example section, Section 4, are particular models specified for the cross-section and
EOS ensuring the general results of Section 3 are applicable to a variety of problems.

The equations in System (2.1) are presented in conservative form. The non-conservative form of
the momentum balance equation

1

ρ

∂p

∂r
+
∂u

∂t
+ u

∂u

∂r
= 0, (2.2)

commonly appearing in fluid mechanics texts [25,41] is recovered from Equation (2.1b) by expansion
of the partial derivatives using the chain rule, factoring out the continuity equation wherever
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possible and simplifying. Similarly, it can be shown that Equation (2.1c) representing energy
balance is equivalent to a statement of isentropic flow

ds

dt
= 0, (2.3)

where we use s to denote the specific entropy, d(∗)/dt for the total derivative

dg(r, t)

dt
=
∂g(r, t)

∂t
+

dr

dt

∂g(r, t)

∂r
, (2.4)

and g(r, t) is an arbitrary function of space and time. This is not to be confused with homentropic
flow for which

ds

dt
= ∇s = 0. (2.5)

The specific entropy is related to specific internal energy, pressure and density using the Gibbs
equation

de = Tds+
p

ρ2
dρ. (2.6)

The equivalence of Equations (2.1c) and (2.3) is to be expected because no mechanisms to facilitate
entropy increase have been incorporated in the model. Details of the equivalence can be found in
Appendix B.

3. Symmetry analysis

Having introduced the system of governing equations in the previous section, we proceed to apply
symmetry analysis, also widely known as Lie group analysis, to study the system. Typically, the
application of symmetry analysis results in the attainment of special types of solutions satisfying
the system of governing equations. These solutions possess certain properties related to the notion
of symmetry. More precisely, the action of the particular group of transformations used to construct
the special solutions leaves the solutions unchanged. As a result, we aptly refer to these solutions
as group-invariant solutions.

The general solution technique is comprised of a number of steps. First, we determine the Lie
groups of point transformations admitted by the governing system of equations. A systematic
approach exists for this purpose and is outlined in the subsequent discussion. Once determined,
the transformations are identifiable with a differential operator, V , known as the infinitesimal
group generator. Using V , a characteristic system is composed from which a new set of variables
is constructed. The new variables correspond to the constants of integration appearing in the
solutions of the characteristic system and therefore amount to some combination of the original
variables. Next, through application of the chain rule and direct substitution, the governing system
can be re-expressed solely in terms of the new co-ordinates. For a system of PDEs which admit
a one-parameter group of transformations, the number of new variables required to describe the
system evolution is typically one fewer than the number of original variables. If a reduction occurs
in the number of independent variables, a simplification of the system is achieved. For example, for
a system of first-order partial differential equations with two independent variables, such as System
(2.1), symmetry analysis facilitates the reduction to a system of ordinary differential equations
that we can solve either explicitly or numerically. The numerical approach required for a system
of ODEs is far simpler than that needed to solve the original PDEs. Once obtained, a solution to
the reduced system is then mapped into a solution of the original system.

Symmetry analysis methods were originally conceived by Sophus Lie [26] in the late 19th century.
Further development of the subject and presentation of its key concepts can be found in the work of
others such as Ovsiannikov [32] and Olver [31]. Both of these texts present advanced treatments of
the subject. For initial exposure, Bluman and Anco [7], Stephani [37] and Logan [27] are excellent



LIE GROUPS OF VARIABLE CROSS-SECTION CHANNEL FLOW 5

references. Additionally, a primer by Albright et. al [2] has been written to make these more in
depth texts easily accessible to the reader.

3.1. Lie groups of point transformations and the infinitesimal group generator. The
aim in this section is to introduce the type of symmetry groups focused on in this paper, define a
criterion for the admissibility of the groups based on the system of equations being considered and
show how this criterion relates to the infinitesimal group generator, V .

As defined in Olver [31, p.93], a symmetry group is a local group of transformations, G, acting
on the space comprised of the independent and dependent variables for which the action of a group
element, g, maps a solution of the system, y = f(x), to a new solution, y = Ψ(g, f(x)), where
Ψ denotes a smooth mapping from an open subset, U , to the smooth manifold, M , Ψ : U → M .
Identifying a symmetry group first requires interpreting the governing equations as functions with
dependence on the vectors x, y, and z denoting the independent variables, the dependent variables,
and the partial derivatives, respectively

Fn(x, y, z) = 0, n = 1 . . . N. (3.1)

The vectors x, y and z have components

xi, yj , zji =
∂yj

∂xi
, i = 1, . . . , I, j = 1, . . . , J. (3.2)

For the channel flow system, in this notation,

x1 = r, x2 = t, (3.3)

y1 = ρ, y2 = u, y3 = p, (3.4)

z1
1 = ρr, z1

2 = ρt, z2
1 = ur, z2

2 = ut, z3
1 = pr, z3

2 = pt, (3.5)

N = 3 and the subscripts denote the partial derivative with respect to the indicated argument.
Next, by the definition of a symmetry group, if the point [x, y, z] is a solution to the System (3.1),
and if g ∈ G, the transformed point, [x̃, ỹ, z̃], is also a solution where

x̃ = Ψ(g, x), ỹ = Ψ(g, y), z̃ = Ψ(g, z). (3.6)

Consequently, symmetry groups can be identified with transformations that leave the functions Fn
invariant, i.e.,

Fn(x, y, z) = 0 = Fn(x̃, ỹ, z̃), n = 1, . . . , N. (3.7)

In this paper, we consider symmetry groups known as local Lie groups of point transformations.
Such transformations are of the form

x̃j = xj + εηj(x, y) +O(ε2), (3.8)

ỹi = yi + εφi(x, y) +O(ε2), (3.9)

z̃ij = zij + εζij(x, y, z) +O(ε2), (3.10)

where the ηj and φi may be functions of x and y and the ζij can be functions of x, y and z. These
transformations are smoothly parameterized by ε and we assume that locally each of the series
on the right hand side (r.h.s) converges. It should be clear that the identity transformations are
defined at ε = 0,

x̃j |ε=0 = xj , ỹi
∣∣
ε=0

= yi, z̃ij
∣∣
ε=0

= zij . (3.11)

At ε = 0, the functions Fn are invariant under transformations of the kind defined by Equations
(3.8) – (3.10) and Equation (3.7) is satisfied. However, we also require Equation (3.7) to hold locally
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around the identity as the value of ε is varied. To determine their local behaviour, the functions
Fn(x̃, ỹ, z̃) are expanded as Taylor series around ε = 0,

Fn(x̃, ỹ, z̃) = F (x, y, z) + ε
dFn(x̃, ỹ, z̃)

dε

∣∣∣∣
ε=0

+O(ε2). (3.12)

For Equation (3.7) to be satisfied, we require

ε
dFn(x̃, ỹ, z̃)

dε

∣∣∣∣
ε=0

+O(ε2) = 0. (3.13)

Applying the chain rule,

d

dε
Fn(x̃, ỹ, z̃)

∣∣∣∣
ε=0

=
J∑
j=1

ηj(x, y)
∂Fn
∂xj

+

I∑
i=1

φi(x, y)
∂Fn
∂yi

+

I,J∑
i,j=1

ζij(x, y, z)
∂Fn
∂zij

, (3.14)

= (V + V (1))Fn(x, y, z) (3.15)

= pr(1)V Fn(x, y, z), n = 1, . . . , N, (3.16)

where

V =
J∑
j=1

ηj(x, y)
∂

∂xj
+

I∑
i=1

φi(x, y)
∂

∂yi
, V (1) =

I,J∑
i,j=1

ζij(x, y, z)
∂

∂zij
, (3.17)

and

pr(1)V = V + V (1). (3.18)

The higher order terms appearing in Equation (3.12) can be expressed in the form

ε2

2!
pr(1)V (pr(1)V Fn) +

ε3

3!
pr(1)V 2(pr(1)V Fn) + · · · . (3.19)

As a result, it is sufficient to conclude that if

pr(1)V Fn(x, y, z)
∣∣∣
Fn=0

= 0, (3.20)

then Equation (3.13) is satisfied and by extension so is Equation (3.7). Equation (3.20) defines
the criterion for infinitesimal invariance and therefore transformations derived from this condition
locally leave the equations of the system studied invariant.

The differential operator, V , defined in Equation (3.17), is the infinitesimal group generator and
acts on the space of independent and dependent variables. Key components of this generator are
the coefficients ηj(x, y) and φi(x, y), subsequently referred to as the independent and dependent

co-ordinate functions, respectively. Together the infinitesimal group generator and V (1) combine
to form the first-order prolongation of the group generator denoted pr(1)V . The superscript (1)
corresponds to the order of the prolongation which typically reflects the highest order partial
derivatives appearing in the governing system. Only the prolongation to first order is required to
analyse the system of channel flow equations.

The prolongation of the group generator appears in the criterion for infinitesimal invariance, as
opposed to just V , as a consequence of treating the differential equations of the system as functions
of the derivatives as well as the independent and dependent variables. The operator V (1) extends
the action of V to the larger space composed of the independent variables, dependent variables and
partial derivatives. The functions ζij(x, y, z) appearing in V (1) preserve the relationship between
the independent and dependent variables, and the partial derivatives when the partial derivatives
are included as additional variables. The ζij(x, y, z) are related to ηj and φi using the prolongation
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formula. For more information on the prolongation formula see [2, 7, 31]. To first order, the ζij are
given by

ζij(x, y, z) =
∂ηi

∂xj
+

I∑
k=1

∂ηi

∂yk
zkj −

J∑
k=1

∂φk
∂xj

zik −
I,J∑
k,l=1

∂φk
∂yl

zikz
l
j . (3.21)

Combined with Equation (3.21), Equations (3.20) define a set of determining equations that
must be solved to determine the co-ordinate functions ηj and φi. The full symmetry group is
determined from the general solution to these equations. However, for the purposes of this paper,
the focus is instead restricted to a search for a subgroup of scaling transformations. These scaling
transformations are discussed in the following section.

3.2. Scaling transformations. For the remainder of this paper, the point transformations con-
sidered are scaling transformations of the form

r̃ = ea1εr, t̃ = ea2εt, (3.22)

ρ̃ = ea3ερ, ũ = ea4εu, p̃ = ea5εp, (3.23)

where the am are real numbers known as the group parameters. The transformations of the inde-
pendent and dependent variables given by Equations (3.22) and (3.23), respectively correspond to
the group generator

V = a1r
∂

∂r
+ a2t

∂

∂t
+ a3ρ

∂

∂ρ
+ a4u

∂

∂u
+ a5p

∂

∂p
, (3.24)

which has co-ordinate functions

η1 = a1r, η2 = a2t, (3.25)

φ1 = a3ρ, φ2 = a4u, φ3 = a5p. (3.26)

Using Equation (3.21), the first order prolongation is

pr(1)V = a1r
∂

∂r
+ a2t

∂

∂t
+ a3ρ

∂

∂ρ
+ a4u

∂

∂u
+ a5p

∂

∂p

+ (a3 − a1)ρr
∂

∂ρr
+ (a3 − a2)ρt

∂

∂ρt
+ (a4 − a1)ur

∂

∂ur

+ (a4 − a2)ut
∂

∂ut
+ (a5 − a1)pr

∂

∂pr
+ (a5 − a2)pt

∂

∂pt
. (3.27)

3.3. Scaling parameter, cross-sectional area and EOS constraints. By solving the system
of determining equations, Equations (3.20), (comprised of System (2.1) and the generator given
by Equation (3.27)) it can be determined that the values of the group parameters cannot be set
completely arbitrarily. We find the following relationships must be imposed

a4 = a1 − a2, (3.28)

a5 = 2(a1 − a2) + a3. (3.29)

An example of solving the determining equation using the continuity equation is given in Appendix
C. This result was verified using Symgrp, an open source computational symmetry analysis package
developed for Maxima [1, 9]. The constraints in Equations (3.28) and (3.29) simply amount to
requiring dimensional consistency between the variables as they are scaled. For example, scaling in
the variables r and t by factors ea1ε and ea2ε respectively must be accompanied by a scaling in the
velocity given by ea4ε = ea1ε/ea2ε = e(a1−a2)ε.

Aside from the constraints of Equations (3.28) and (3.29), the admissibility of particular sym-
metry transformations is also contingent on the cross-sectional area of the duct as a function of
space and time, A(r, t), in addition to the choice of specific internal energy function, e(ρ, p), acting
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as the EOS. The following differential equations stem from the determining system and must be
satisfied

a1(rAArr − rA2
r +AAr) + a2(tAArt − tArAt) = 0, (3.30)

a1(rAArt − rArAt) + a2(tAAtt − tA2
t +AAt) = 0, (3.31)

a3

(
ρ2p(eρepp − eρpep)− p2epp − ρ3eρρep − pep + ρ3eρeρp − ρpeρp

)
+ 2a2

(
ρ2p(eρpep − eρepp) + p2epp − ρ2eρep

)
+ 2a1

(
ρ2p(eρepp − eρpep)− p2epp + ρ2eρep

)
= 0, (3.32)

where the subscripts again denote partial differentiation with respect to the indicated argument. In
the following section, we consider some cross-sectional area and EOS models that are compatible
with these constraints.

3.4. Cross-sectional area and EOS models. In the previous, Equations (3.30), (3.31) and
(3.32) were found from the system of determining equations. Based on the values of the group
parameters, these constraints restrict the admissible models for the cross-sectional area function
and the EOS that permit scaling symmetries. In the subsequent discussion, some combinations of
the area function, EOS and group parameter values that satisfy the constraints are presented. First,
the case of a time independent area function is considered, A := A(r). Consequently, Equation
(3.31) is satisfied and Equation (3.30) reduces to

a1(rAArr − rA2
r +AAr) = 0. (3.33)

If a1 is equal to zero, this equality is satisfied for any cross-section. Alternatively, assuming a1 6= 0,
the most general solution for the area function is given by

A = c1r
c2 , (3.34)

where c1 and c2 are arbitrary constants. In the select cases where c2 takes discrete values of 0, 1 or
2, substituting this area function into System (2.1) recovers the equations governing motion in the
exact planar, cylindrical and spherical geometry cases, respectively. For example, coupled with the
ideal gas EOS, this cross-sectional area function gives equations analogous to those considered by
Guderley in his study of a converging shockwave in curvilinear geometries [20,34]. Equation (3.34)
informs us about the time independent, geometrical nature of the region bounding scale invariant
fluid flow. It also illustrates the generalization achieved through use of the quasi-1D model which
generalises the constants c1 and c2 to a continuous set of values.

Next, by including time dependence in the area function, Equations (3.30) and (3.31) become
far more challenging to solve. A general solution is not provided in this case. Instead, only some
possibilities along with the corresponding values of the constants a1 and a2 necessary for symmetry
existence are discussed. The first possibility is given by

A = c1r
c2tc3 , (3.35)

where c1, c2 and c3 are constants. This particular example does not require any further constraints
imposed between a1 and a2. However, we could consider adding an additional constant c4 to obtain

A = c1r
c2tc3 + c4. (3.36)

In this case, assuming c1 and c4 are non-zero, it is also required that

a1c2 + a2c3 = 0, (3.37)

and therefore the choice of constants c2 and c3 determine the relationship between a1 and a2 or vice
versa. Another solution for the area function satisfying Equations (3.30) and (3.31), determined
by inspection is

A = c1r
c2 + c3t

c2 . (3.38)
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This solution requires the values for a1 and a2 to be equal. In Section 4, this particular cross-
sectional function will be applied to determine a solution to the example problem considered.

In addition to a function describing the cross-sectional area, solving example problems requires
the prescription of an EOS. The most simplistic of these, satisfying Equation (3.32) without de-
manding constraints on the group parameters is the ideal gas EOS

e =
p

(γ − 1)ρ
, (3.39)

where γ denotes the adiabatic parameter. Alternatively, by inspection, if a3 = 0 and a1 = a2,
Equation (3.32) is satisfied for any EOS. Note that this coinsides with the values of the group
parameters required for the cross-section given by Equation (3.38).

3.5. Symmetry reduction of the duct flow equations. Now that the constraints on the infin-
itesimal group generator have been discussed, the characteristic system corresponding to the group
generator in Equation (3.24) is solved to construct new variables. The new variables are used to
re-express the channel flow equations. Subject to the constraints of Equations (3.28) and (3.29),
the characteristic system is given by

dr

a1r
=

dt

a2t
=

dρ

a3ρ
=

du

(a1 − a2)u
=

dp

[2(a1 − a2) + a3] p
. (3.40)

Solving the equality consisting of the first two members of Equation (3.40), under the assumption
a1 6= 0, we obtain

ra2/a1 = ct, (3.41)

where c is the constant of integration. Rearranging and relabelling c using ξ

ξ =
ra2/a1

t
. (3.42)

The new variable ξ is therefore a constant contingent on the initial values of r and t and on the
parameters a1 and a2. It will subsequently be referred to as the independent similarity variable.
Similarly, from the equalities consisting of the first and third, first and fourth and first and fifth
members of Equation (3.40) we find

ρ = ρ̂(ξ)ra3/a1 = ρ̂(ξ)rδ2 , (3.43)

u = û(ξ)r(a1−a2)/a1 = û(ξ)rδ1 , (3.44)

p = p̂(ξ)r[2(a1−a2)+a3]/a1 = p̂(ξ)r2δ1+δ2 , (3.45)

where ρ̂, û and p̂ are integration constants and a re-parameterization has been made using δ1 =
(a1 − a2)/a1 and δ2 = a3/a1. The integration constants appearing in Equations (3.43) – (3.45)
are considered to be arbitrary functions of the similarity variable and constitute the new set of
dependent variables. The exact dependance of each on ξ must be determined.

Substituting Equations (3.43)–(3.45) into Equations (2.1) and noting that, by the chain rule, the

partial derivatives of a function f̂(ξ) can be expressed as

∂f̂(ξ)

∂r
=
∂ξ

∂r

∂f̂(ξ)

∂ξ
=
a2

a1

ra2/a1

tr

∂f̂(ξ)

∂ξ
= (1− δ1)

ξ

r

∂f̂(ξ)

∂ξ
, (3.46)

∂f̂(ξ)

∂t
=
∂ξ

∂t

∂f̂(ξ)

∂ξ
= −r

a2/a1

t2
∂f̂(ξ)

∂ξ
= −ξ

t

∂f̂(ξ)

∂ξ
, (3.47)
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the system of channel flow equations becomes

A

[
−ξ ∂ρ̂

∂ξ
+ rδ1

t

r

{
(δ1 + δ2)ρ̂û+ (1− δ1)ξ

∂(ρ̂û)

∂ξ

}]
+Attρ̂+Artr

δ1 ρ̂û = 0, (3.48)

−ξρ̂∂û
∂ξ

+
t

r
rδ1
{
δ1ρ̂û

2 + (2δ1 + δ2)p̂+ (1− δ1)ξ
∂p̂

∂ξ
+ (1− δ1)ξρ̂û

∂û

∂ξ

}
= 0, (3.49)

A

[
rδ1

t

r

{
ρ̂û

(
epr

2δ1+δ2

(
(2δ1 + δ2)p̂+ (1− δ1)ξ

∂p̂

∂ξ

)
+ eρr

δ2

(
δ2ρ̂+ (1− δ1)ξ

∂ρ̂

∂ξ

))

+ r2δ1

(
(1− δ1)ξp̂

∂û

∂ξ
+ δ1p̂û

)}
− rδ2 ρ̂

{
epr

2δ1+δ2ξ
∂p̂

∂ξ
+ eρξ

∂ρ̂

∂ξ

}]
+Attr

2δ1 p̂+Artr
3δ1 p̂û = 0, (3.50)

For further details on the derivation of these equations, see Appendix D. Specification of the
functions A(r, t) and e(ρ, p) are required to fully reduce the system and hence express the equations
entirely in terms of the new variables.

4. Example - The Noh problem

First introduced by W. F. Noh in 1987 [29], the “Noh problem” is used to test and verify the
accuracy of hydro-codes. This test problem has many benefits: it is straightforward to initialize,
has a simple closed-form solution for an ideal gas, and provides numerous phenomena to test, in-
cluding wall-heating effects and system asymmetries. In the following discussion, the problem setup
is defined and the compatibility of the initial conditions of the problem with the symmetry trans-
formations discussed in Section 3 are considered once again via the infinitesimal group generator.
Additionally, a cross-sectional area function is specified and a solution is obtained which concurs
with previous work in the literature.

4.1. Problem definition. In this test problem, a fluid of spatially uniform initial density ρ0 =
ρ(r, t = 0) flows at a constant initial velocity u0 = u(r, t = 0) into a rigid wall located at r = 0.
The resulting discontinuity in the fluid velocity at impact sends a shockwave back upstream into
the incoming fluid behind which the flow is assumed to stagnate. The problem setup at time t = 0
is shown in Figure 2 for a conically shaped channel.

At some subsequent time t > 0, the shock wave has travelled a finite distance into the incoming
fluid. The problem is therefore separated into two regions: shocked and unshocked, denoted α and
β respectively. The regions are displayed in Figure 3. The system of channel flow equations assume
the flow is smooth and are therefore only applicable in the regions on either side of the discontinuous
shockwave. Consequently, solutions in the regions α and β are determined independently of one
another. In order to stitch the solutions together and account for the discontinuous change in fluid
variables across the shockwave, we rely upon the Rankine-Hugoniot jump conditions [15, Chap. 16]

ρβ
ρα

=
D − uα
D − uβ

, (4.1)

pβ − pα = ρα(uβ − uα)(D − uα), (4.2)

eβ − eα =
pβuβ − pαuα
ρα(D − uα)

− 1

2
(u2
β − u2

α). (4.3)

In Equations (4.1) – (4.3), D denotes the shock front velocity

D =
drs
dt
, (4.4)

where the position of the shockwave is denoted rs(t). At t = 0, rs(t = 0) = 0.
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rr = 0

y

y = f(r) = r

u0

ρ0

Figure 2. Noh problem setup at t = 0 in a conical channel.

4.2. Auxiliary conditions and the group generator. The first step to solving this problem
using symmetry methods is to determine the admissible values for the group parameters permitted
under the auxiliary conditions of the Noh problem. First, the initial conditions F4 = 0 and F5 = 0
must satisfy Equation (3.20) where

F4 = u− u0 = 0, (4.5)

F5 = ρ− ρ0 = 0, (4.6)

and u0 and ρ0 are constants. Substituting Equation (4.5) into Equation (3.20)

pr(1)V (u− u0)|u=u0
= 0, (4.7)

which leads to

a4u|u=u0
= a4u0 = (a1 − a2)u0 = 0, (4.8)

and therefore

a1 = a2, (4.9)

for a non-trivial initial velocity. Repeating for Equation (4.6)

pr(1)V (ρ− ρ0)|ρ=f(r,t) = a3ρ|ρ=ρ0
= 0, (4.10)

and therefore

a3 = 0 (4.11)
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rr = 0

y

rs(t)

y = f(r) = r

u0

Region α Region β

uα = 0

Figure 3. The Noh problem at t > 0 in a conical channel.

for a non-trivial initial density. Under these restrictions, the infinitesimal group generator simply
consists of a scaling in space and time

VNoh = r
∂

∂r
+ t

∂

∂t
. (4.12)

Ensuring that Equations (4.1) – (4.3) also satisfy Equation (3.20) further requires the shock velocity
to be constant

D = constant. (4.13)

By Equation (3.42) the restrictions from the auxiliary equations yield the similarity variable

ξ =
r

t
. (4.14)

Similarly, by inspection of Equations (3.43) – (3.45), the density, velocity and pressure are simply
unknown functions of ξ

ρ = ρ̂(ξ), (4.15)

u = û(ξ), (4.16)

p = p̂(ξ), (4.17)
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and the reduced channel flow system, Equations (3.48) – (3.50), becomes

A

[
−ξ ∂ρ̂

∂ξ
+
∂(ρ̂û)

∂ξ

]
+Attρ̂+Artρ̂û = 0, (4.18)

−ξρ̂∂û
∂ξ

+
∂p̂

∂ξ
+ ρ̂û

∂û

∂ξ
= 0, (4.19)

A

[
ρ̂ep̂

(
û
∂p̂

∂ξ
− ξ ∂p̂

∂ξ

)
+ ρ̂eρ̂

(
û
∂ρ̂

∂ξ
− ξ ∂ρ̂

∂ξ

)
+ p̂

∂û

∂ξ

]
+Attp̂+Artp̂û = 0. (4.20)

4.3. A cross-sectional area function and the isentropic bulk modulus. In order to further
progress towards a solution, a function for the area A := A(r, t) must be specified. In Section 3.1
it was determined that an area function of the form given by Equation (3.38) requires a1 = a2,
thus this choice is compatible with the initial conditions of the Noh problem. Substituting A =
c1r

c2 + c3t
c2 and therefore Ar = c1c2r

c2−1 and At = c2c3t
c2−1 into Equations (4.18) – (4.20)

−ξρ̂′ + ûρ̂′ + ρ̂

(
û′ +

c2c3 + c1c2ξ
c2−1û

c1ξc2 + c3

)
= 0, (4.21)

−ξû′ + ûû′ +
p̂′

ρ̂
= 0, (4.22)

ρ̂ep̂
(
ûp̂′ − ξp̂′

)
+ ρ̂eρ̂

(
ûρ̂′ − ξρ̂′

)
+ p̂

(
û′ +

c2c3 + c1c2ξ
c2−1û

c1ξc2 + c3

)
= 0, (4.23)

where the primes denote differentiation with respect to ξ and we have assumed c1 6= 0. Next,
dividing Equation (4.23) through by ρ̂ep̂ gives

− ξp̂′ + ûp̂′ +
1

ep̂

[
eρ̂
(
ûρ̂′ − ξρ̂′

)
+
p̂

ρ̂

(
û′ +

c2c3 + c1c2ξ
c2−1û

c1ξc2 + c3

)]
= 0. (4.24)

From Equation (4.21)

ûρ̂′ − ξρ̂′ = −ρ̂
(
û′ +

c2c3 + c1c2ξ
c2−1û

c1ξc2 + c3

)
.

Substituting this result into Equation (4.24) and rearranging gives

− ξp̂′ + ûp̂′ +
1

ep̂

(
p̂

ρ̂
− ρ̂eρ̂

)(
û′ +

c2c3 + c1c2ξ
c2−1û

c1ξc2 + c3

)
= 0. (4.25)

Identifying the coefficient of the third term as being equivalent to the isentropic bulk modulus K

K = −ρsρ
sp

=
1

ep

(
p

ρ
− ρeρ

)
, (4.26)

where s denotes the entropy as a function of density and pressure s := s(ρ, p), (see Axford [3, p. 2,
eq. 7] for details) we arrive at the following reduced system of channel flow equations

−ξρ̂′ + ûρ̂′ + ρ̂

(
û′ +

c2c3 + c1c2ξ
c2−1û

c1ξc2 + c3

)
= 0, (4.27)

−ξû′ + ûû′ +
p̂′

ρ̂
= 0, (4.28)

−ξp̂′ + ûp̂′ +K

(
û′ +

c2c3 + c1c2ξ
c2−1û

c1ξc2 + c3

)
= 0. (4.29)

For c3 = 0 and c2 set to discrete values of 0,1 or 2, this system of equations is analogous to that
presented in Ramsey et al. [33].
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4.4. Solution in the unshocked region. Given the problem set up described in Section 4.1,
for some time t > 0 the velocity of the flow into the channel remains constant and is therefore
equivalent to the initial velocity prescribed at t = 0, û = u0 < 0. Under this condition, the
conservation equations, Equations (4.27)–(4.29), become

(u0 − ξ) ρ̂′ + ρ̂

(
c2c3 + c1c2ξ

c2−1u0

c1ξc2 + c3

)
= 0, (4.30)

p̂′

ρ̂
= 0, (4.31)

−ξp̂′ + u0p̂
′ +K

(
c2c3 + c1c2ξ

c2−1u0

c1ξc2 + c3

)
= 0. (4.32)

Equation (4.30) is satisfied for

ρ̂β = ν
(ξ − u0)c2

c1ξc2 + c3
, (4.33)

= ν
(r − u0t)

c2

c1rc2 + c3tc2
, (4.34)

where ν is the integration constant. Applying the initial condition ρ0 = ρ̂(r, t = 0) gives

ρ̂β =

ρ0
c1(r − u0t)

c2

c1rc2 + c3tc2
, c2 6= 0,

ρ0, c2 = 0.
(4.35)

For c3 = 0 this result again agrees with that provided in [33, Eqn. 24].
Given this result for ρ̂β, Equation (4.31) is satisfied for

p̂β = constant. (4.36)

Thus, the solutions to Equation (4.32) are determined by solving

K

(
c2c3 + c1c2ξ

c2−1u0

c1ξc2 + c3

)
= 0. (4.37)

Recalling the previous assumptions, c1 6= 0 and u0 < 0, this equation is satisfied in two cases

K = 0, or c2 = 0. (4.38)

Substituting K = 0 into Equation (4.26) for the isentropic bulk modulus yields

∂ê

∂ρ̂
=

p̂

ρ̂2
. (4.39)

Holding p̂ as constant and integrating

ê+
p̂

ρ̂
= f(p̂), (4.40)

where f is an arbitrary function of its argument. Equation (4.40) is satisfied for either

ρ̂β = constant, or êβ +
p̂β
ρ̂β

= constant. (4.41)

Since, for the unshocked region, it was determined that the solution for the density profile, Equation
(4.35), is not constant, the first case of Equation (4.41) is ruled out. Consequently, substituting
the solution for the density and pressure profiles for the unshocked region into the latter case yields
the following equality that must be satisfied

eβ +
pβ
ρ0

(c1r
c2 + c3t

c2)

c1(r − u0t)c2
= constant. (4.42)
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4.5. Solution in the shocked region. At some time t > 0, the velocity of the flow in the shocked
region is zero, that is, ûα = 0. Thus, Equations (4.27)–(4.29) become

−ξρ̂′ + ρ̂
c2c3

c1ξc2 + c3
= 0, (4.43)

p̂′

ρ̂
= 0, (4.44)

−ξp̂′ +K
c2c3

c1ξc2 + c3
= 0. (4.45)

Equation (4.43) is satisfied when

ρ̂α = ν
ξc2

c1ξc2 + c3
, (4.46)

= ν
rc2

c1rc2 + c3tc2
, (4.47)

where ν is the integration constant. When c3 = 0, ρα = constant which agrees with the result
provided in [33].

Equation (4.44) is satisfied by

p̂α = constant. (4.48)

Noting this, Equation (4.45) becomes

K
c2c3

c1ξc2 + c3
= 0, (4.49)

which is satisfied when either K = 0, c2 = 0 or c3 = 0. Solving the K = 0 case as before yields the
result given in Equation (4.40) which for the shocked region is satisfied for either

ρ̂α = constant, êα +
p̂α
ρ̂α

= constant. (4.50)

If c2 and c3 are simultaneously non-zero, Equation (4.47) yields a non-constant density and therefore
the latter case in (4.50) must be satisfied.

To summarize, for curvilinear geometries, i.e., where c2 6= 0, the Noh problem imposes constraints
on the EOS for solutions to exist. In the case of a time independent cross-sectional area, it is
necessary for the EOS to satisfy only Equation (4.42). However, by including time dependence,
i.e., c3 6= 0, the latter equality in Equation (4.50) must additionally be satisfied.

4.6. A solution using the ideal gas EOS. Up to this point, the solutions in the unshocked
and shocked regions defined in Sections 4.4 and 4.5, respectively have been determined without
defining a specific EOS. For planar geometries, it was determined that no restrictions on the EOS
are required for a solution of the Noh problem to exist. However, for c2 6= 0 and depending on
the value of c3, either Equation (4.42) or both Equation (4.42) and the latter equality in Equation
(4.50) must be satisfied. For simplicity and example purposes, the following discussion provides
a solution pertaining to the ideal gas EOS since it supports the existence of a Noh solution in all
geometries. Solutions to the Noh problem for a variety of EOS models including the ideal gas case
have previously been presented by Axford [3] and generalized by Ramsey et al. [33]. By modelling
the fluid flow using the quasi-1D model, further generalization of these results has been achieved
including the addition of time dependent behavior for the cross-section and extension of the channel
geometries considered.
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4.6.1. K 6= 0. First, the case where the isentropic bulk modulus K 6= 0 is explored. By inspection
of Equation (4.37), in order for the energy equation to be satisfied in the unshocked region, we
require c2 = 0. Under this restriction, the energy equation in the shocked region is simultaneously
satisfied for non-zero K and by Equation (4.35) the density in the unshocked region is constant

ρβ = ρ0. (4.51)

Combining the constant unshocked density with the velocities in the shocked and unshocked regions
and the ideal gas EOS

uα = 0, uβ = u0, e(ρ, p) =
p

(γ − 1)ρ
, (4.52)

the jump conditions reduce to

ρα = ρ0

(
1− u0

D

)
, (4.53)

pβ − pα = ρ0(D − u0)u0, (4.54)

eβ − eα =
pβu0

ρ0(D − u0)
− 1

2
u2

0 =
pβ

(γ − 1)ρ0
− pα

(γ − 1)ρα
. (4.55)

Solving for the shockwave velocity and then back substituting into Equations (4.53) and (4.54), the
solution is

D = −u0(γ − 3)

4
+

√
pβγ

ρ0
+
u2

0(γ + 1)2

16
, (4.56)

ρα = ρ0

1 +
u0

u0(γ − 3)

4
−

√
pβγ

ρ0
+
u2

0(γ + 1)2

16

 , (4.57)

pα = pβ − ρ0u0

−u0(γ + 1)

4
+

√
pβγ

ρ0
+
u2

0(γ + 1)2

16

 . (4.58)

4.6.2. K = 0. Next, the case where K = 0 is considered which, by inspection of Equations (4.37)
and (4.49), allows for arbitrary values of c2 and c3. For the subcase K = c3 = 0, Equation (4.50)
is satisfied since ρ̂α = constant. However, for the unshocked region, ρβ 6= constant. Therefore if
K = 0, the EOS must satisfy Equation (4.42). For the ideal gas EOS, this leads to

γpβ
(γ − 1)ρ0

(
r

r − u0t

)c2
= constant, (4.59)

which requires pβ = 0. Rearranging Equation (4.2) for the shock velocity and substituting pβ = 0
yields

D = − pα
u0ρα

. (4.60)

Since pα, u0 and ρα are all constant, D must also be constant. Given this result and Equation (4.4)
we can integrate with respect to time to obtain∫ t

0
Ddt =

∫ t

0

drs(t)

dt
dt, (4.61)

which results in

Dt = rs(t)− rs(0), (4.62)

= rs(t). (4.63)
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This relationship defines the spatial coordinate r in terms of the shock velocity and time

rs = Dt. (4.64)

Next, by the following equalities

pβ = 0,
rs
t

= D, uα = 0, uβ = 0, ρβ = ρ0

(
1− u0t

r

)c2
,

the jump equations become

ρα = ρ0

(
1− u0

D

)c2+1
, (4.65)

pα = −ραDu0, (4.66)

eβ − eα =
1

2
u2

0 =
pα

(γ − 1)ρα
. (4.67)

Again, solving for the shock velocity and back substituting into Equations (4.65) – (4.67) the
solution is

D = −u0(γ − 1)

2
, (4.68)

ρα = ρ0

(
γ + 1

γ − 1

)c2+1

, (4.69)

pα = ρ0

(
γ + 1

γ − 1

)c2+1 u2
0

2(γ − 1)
. (4.70)

Finally, for the case where K = 0 but c3 6= 0 the density profile in the shocked region is no longer
constant unless c2 = 0. Therefore the latter case of Equation (4.50) must also be satisfied. For the
ideal gas, satisfying Equation (4.42) leads to the same result as before, namely pβ = 0. Satisfying
Equation (4.50) however requires

γpα
(γ − 1)ρα

= constant, (4.71)

which further requires pα = 0. Substituting pα = pβ = 0 into Equation (4.2) yields a zero shock
velocity D = 0. Since there is no shock generated there is no α-region created. Thus, the solution
for the shock velocity, pressure and density within the channel is simply

D = 0, (4.72)

ρβ = ρ0
c1(r − u0t)

c2

c1rc2 + c3tc2
, c2 6= 0 (4.73)

pβ = 0. (4.74)

Physically, this solution corresponds to the channel walls moving at a rate in time that mitigates
the production of a shockwave.

5. Conclusions

In summary, the equations pertaining to quasi-1D channel flow were studied within the context
of symmetry analysis. As a result, we identified a coupling between the parameters determining
the scaling transformations, the cross-section of the channel and the material properties of the
fluid i.e., the EOS. Following these results, various admissible combinations of scaling parameters,
cross-sectional area functions and EOS models were discussed. In particular, for the case of a time-
independent cross-section, it was determined that the most general function for the area permitting
arbitrary values for a1 and a2 was given by A = c1r

c2 where c1 and c2 are constants. Only if a1 = 0
are scaling solutions possible for more general time-independent functions for the channel cross-
section.
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By making the assumption that the channel flow was quasi-1D, the values of c1 and c2 appearing
in the cross-section A = c1r

c2 were permitted to vary continuously while still permitting scaling
symmetry. This result is an extension of the known scaling symmetries admitted for exact 1D
flow corresponding to c2 = 0, 1 or 2. The symmetry analysis was then further extended by the
addition of time dependence to the channel cross-section. By applying the symmetry analysis
results, the quasi-1D Noh problem was analysed for a channel cross-section that was compatible
with the symmetry contraints imposed by the problem initial conditions. A conditional solution
was determined for an unspecified EOS. This conditional solution was subsequently evaluated to
obtain an explicit solution for the case of an ideal gas.

There are many possibilities for further extension of this work. One might involve the extension of
other existing solutions for 1D self-similar problems via the quasi-1D assumption. Examples could
be the Sedov-Taylor-von Neuman point explosion or converging Guderley problems. Solutions to
these problems were obtained using Lie groups of scaling transformations. However, previous work
by Ovsiannikov [32], and many others [2, 8, 13, 14] have demonstrated that the Euler equations
governing compressible, inviscid flow admit additional symmetry transformations. Included are
translation, Galilean and projective transformations in addition to the numerous possible linear
combinations of these elementary symmetries. At present, it is unknown how the cross-section
of the channel is coupled to these additional symmetries and whether the 8−parameter group
reported by Ovsiannikov can be extended by the additional flexibility allowed in the cross-section
for quasi-1D flow.

Further work might also extend the results given here for point symmetries to generalized sym-
metries of the kind discussed in Olver [31, Chap. 5] or even weak symmetries which are discussed
in Olver and Rosenau [30]. Generalized symmetries add a level of complexity compared to point
symmetries by allowing the transformations to depend on derivatives in addition to the independent
and dependent variables.

Alternatively, future work could pursue the case where a1 = 0. In the analysis given, it was
assumed a1 6= 0 which restricted the channel geometries permitted. If a1 = 0, a broader set of
geometries may be considered however the number of initial/boundary conditions admitted by such
a restricted group generator are limited. This in turn limits the shockwave problems that can be
addressed. Consequently, the focus of such work could be directed towards constructing shock-less
solutions similar to those given in Coggeshall [13] and McHardy et al. [28].

Lastly, other extensions of the current work could include the addition of viscosity or heat
conduction models or both to the governing equations to understand how these alter the symmetry
groups admitted.
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Appendix A. The channel flow equations: Derivation

We begin by stating the integral equations of motion for a material volume [41, Chap 1, p.32-33].
Here the material volume refers to the volume of a parcel of fluid that moves at the fluid velocity
u, undergoing deformation with no mass flux through its encompassing boundary. Consequently,
the time rate of change of mass within a material volume is zero

d

dt

∫
Ω∗(t)

ρdV = 0, (A.1)
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where ∂Ω∗(t) denotes the material volume surface. Next, the momentum balance is defined by
equating the time rate of change of the material volume momentum to the net sum of the body
forces plus the surface forces

d

dt

∫
Ω∗(t)

ρudV =

∫
Ω∗(t)

ρGdV︸ ︷︷ ︸
body forces

+

∫
∂Ω∗(t)

TdS,︸ ︷︷ ︸
surface forces

(A.2)

where G is the specific body force vector causing the material volume to accelerate and T is the
surface traction vector which is simply a surface force per unit area. For the purposes of this paper,
the effect of any viscous forces are neglected and therefore the viscous stress tensor is zero. As
a result, the only contributions to the surface traction vector enter through hydrostatic pressure
forces, i.e., the traction vector simply corresponds to the fluid pressure force acting normal to the
surface

T = −pn, (A.3)

where n is the outward surface unit normal vector. Finally, the energy balance is constructed
by relating the time rate of change of energy, E, to the energy transfer rate generated via the
mechanisms of heat and work

d

dt

∫
Ω∗(t)

ρEdV =

∫
Ω∗(t)

ρG · udV +

∫
∂Ω∗(t)

T · udS︸ ︷︷ ︸
work

−
∫
∂Ω∗(t)

q · ndS︸ ︷︷ ︸
heat

, (A.4)

where E = e + u2/2. The two components of the energy considered are the specific internal and
the specific kinetic energies denoted e and u2/2, respectively. In the subsequent discussion, as well
as neglecting any viscous effects, all body forces, such as gravitational forces, are also ignored.
Furthermore, the heat conduction terms in the energy equation are excluded. As a result, there
are no mechanisms included to facilitate the increase of entropy within the system. It is recognized
that these effects play a significant role near the channel walls and that the approximation will
deteriorate as the length of the channel is increased. The applicability of the analysis is therefore
restricted to reasonably short channels. For an idea of what constitutes “short” the reader is referred
to Thompson [41, Chap. 6] where frictional forces are discussed. In addition to the assumption
that the channel is “short”, the success of the model is also dependent on the channel geometry.
With the exception of the geometries corresponding to the exact cases considered in [33], the most
successful results are obtained when

da

dr
<< 1 and

a

C
<< 1, (A.5)

where a denotes a measure of the cross-sectional area, e.g. the radius of the channel, and r and C
denote the length along the channel and the radius of curvature of the channel wall, respectively.

Next, Equations (A.1) – (A.4) are applied to the control volume outlined in Figure 1. In order
to achieve this we make use of the Reynold’s transport theorem which states

d

dt

∫
Ω(t)

χdV =

∫
Ω(t)

∂χ

∂t
dV +

∫
∂Ω(t)

χb · ndS, (A.6)

where χ := χ(r, t) is any summable, continuous function, Ω(t) denotes an arbitrary volume, b is
the velocity at which the volume is moving relative to the observer in the stationary, laboratory
reference frame and n is the outward unit normal to the surface ∂Ω. Applying this to Equation
(A.1) gives

d

dt

∫
Ω∗(t)

ρdV =

∫
Ω∗(t)

∂ρ

∂t
dV +

∫
∂Ω∗(t)

ρu · ndS = 0. (A.7)
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The Reynold’s transport theorem can similarly be applied to the control volume which will now
also be denoted by Ω(t)

d

dt

∫
Ω(t)

ρdV =

∫
Ω(t)

∂ρ

∂t
dV +

∫
∂Ω(t)

ρb · ndS, (A.8)

where b is now the velocity of the control volume. Next, taking the arbitrary material volume
discussed previously and matching it exactly to the control volume so that

Ω(t) = Ω∗(t), ∂Ω(t) = ∂Ω∗(t), (A.9)

Equation (A.7) can be substituted into Equation (A.8) to obtain

d

dt

∫
Ω(t)

ρdV +

∫
∂Ω(t)

ρ(u− b) · ndS = 0. (A.10)

Finally, by fixing the control volume to be stationary, b = 0, this result reduces to

d

dt

∫
Ω(t)

ρdV +

∫
∂Ω(t)

ρ(u · n)dS︸ ︷︷ ︸
mass flow in/out

= 0. (A.11)

The momentum and energy equations for the control volume can be found analogously. By ne-
glecting the body forces, viscosity and heat conduction, the resulting equations are

d

dt

∫
Ω(t)

ρudV +

∫
∂Ω(t)

ρu(u · n)dS︸ ︷︷ ︸
momentum flow in/out

=

∫
∂Ω(t)

TdS, (A.12)

d

dt

∫
Ω(t)

ρEdV +

∫
∂Ω(t)

ρE(u · n)dS︸ ︷︷ ︸
energy flow in/out

=

∫
∂Ω(t)

T · udS, (A.13)

A.1. Mass. Starting from the control volume continuity equation, Equation (A.11), under the
assumption that there is no fluid flux through the channel walls, i.e., the only flow into and out
of the control volume is through the permeable left and right end surface areas, ∂Ω1 and ∂Ω2,
respectively, the second integral term can be expressed simply as the sum of two components∫

∂Ω(t)
ρu · ndS =

∫
∂Ω1(t)

ρu · n1dS +

∫
∂Ω2(t)

ρu · n2dS, (A.14)

where n1 and n2 are unit normal vectors to surfaces, ∂Ω1 and ∂Ω2. The control volume defined
in Figure 1 has left and right surfaces corresponding to cross-sectional areas of the channel. Con-
sequently, the unit normals of these surfaces are parallel to the channel axis which points in the
direction ı̂. The unit normal vectors are therefore given by

n1 = −ı̂, n2 = ı̂. (A.15)

Next, evaluating the dot products in Equation (A.14) gives

u · n1 = −ui, u · n2 = ui, (A.16)

where ui denotes the magnitude of the axial component of the velocity vector. Next, the flows are
approximated to be quasi-1d. This assumption enables multi-dimensional flows to be treated using
a simpler 1-d model. In real flows, the distributions of the pressure, density and magnitude of the
flow velocity components parallel to the axis of the channel vary over the channel cross sectional
area. In the quasi-1d assumption, all axial velocity components, pressures and densities assume
the mean value across the channel cross section. Any transverse components of the velocities
ensuring the flow remains in contact with the channel walls are only taken into account through
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conservation of mass. As a result, under the quasi-1d assumption, ui corresponds to the mean
value of the axial velocity component averaged over the cross-sectional area. In the subsequent
discussion, the subscript i is dropped and ui is denoted simply by u. Equation (A.11) therefore
becomes

d

dt

∫
Ω(t)

ρdV +

∫
∂Ω2(t)

ρudS −
∫
∂Ω1(t)

ρudS = 0. (A.17)

The second and third integrals appearing can be evaluated explicitly since the density and velocity
no longer vary over the cross-section giving

d

dt

∫
Ω(t)

ρdV + (ρuA)|r2 − (ρuA)|r1 = 0, (A.18)

where r1 and r2 denote the spatial locations of the surfaces ∂Ω1 and ∂Ω2 respectively and A(r, t)
denotes the cross-sectional area of the channel.

Next, the remaining volume integration can be separated into integrals over the cross sectional
area function A(r, t) and the length of the control volume

d

dt

∫
Ω(t)

ρdV =
d

dt

∫ r2

r1

∫ A(r,t)

0
ρdSdr =

d

dt

∫
∆r
ρAdr, (A.19)

where the area integral has again been evaluated since the density is assumed constant over the
cross section. Finally, substituting this result into Equation (A.18), dividing the whole equation
through by ∆r and taking the limit as ∆r → 0

lim
∆r→0

1

∆r

d

dt

∫
∆r
ρAdr +

(ρuA)|r2 − (ρuA)|r1
∆r

= 0, (A.20)

yields the channel flow continuity equation

∂(ρA)

∂t
+
∂(ρuA)

∂r
= 0. (A.21)

A.2. Momentum. Beginning with Equation (A.12), the channel flow momentum equation is de-
rived by following an approach similar to the derivation of the mass equation. First, the surface
traction vector is replaced using Equation (A.3)

d

dt

∫
Ω(t)

ρudV +

∫
∂Ω(t)

ρu(u · n)dS︸ ︷︷ ︸
momentum flow in/out

= −
∫
∂Ω(t)

pndS. (A.22)

Next, we only consider contributions pertaining to momentum changes in the direction ı̂ along the
channel axis and therefore the momentum equation becomes

d

dt

∫
Ω(t)

ρ(̂ı · u)dV +

∫
∂Ω(t)

ρ(̂ı · u)(u · n)dS = −
∫
∂Ω(t)

p(̂ı · n)dS. (A.23)

The dot product ı̂·u equals ui which in the quasi-1d approximation becomes the mean value u at all
points over the cross-section. Once again, the volume integral on the left hand side of the equality
can be separated into an integral over the channel cross-section and the length of the channel

d

dt

∫
Ω(t)

ρudV =
d

dt

∫ r2

r1

∫ A(r,t)

0
ρudSdr =

∫
∆r
ρAdr. (A.24)

Also, as was true for the mass flow, the flow of momentum out and in only takes place through
the surface areas ∂Ω1 and ∂Ω2, respectively. Consequently, the second integral of Equation (A.23)
is reduced to a sum of two components∫

∂Ω(t)
ρu(u · n)dS =

∫
∂Ω1(t)

ρu(u · n1)dS +

∫
∂Ω2(t)

ρu(u · n2)dS, (A.25)
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where n1 and n2 are again the unit normal vectors to the surfaces ∂Ω1 and ∂Ω2, respectively.
Evaluating the dot products as we did for the mass equation gives∫

∂Ω(t)
ρu(u · n)dS =

∫
∂Ω2(t)

ρu2dS −
∫
∂Ω1(t)

ρu2dS (A.26)

= (ρu2A)
∣∣
r2
− (ρu2A)

∣∣
r1
. (A.27)

Next, we evaluate the remaining integral on the right hand side (r.h.s.) of Equation (A.23). As a
reminder, this term represents the surface forces in the ı̂ direction acting on the control volume. For
the case of fluid flow through a channel in the absence of viscous effects, this term amounts to the
forces imparted on the control volume by the channel walls as well as from the pressure of the fluid
on either side of the control volume. Evaluating this term requires application of Gauss’s divergence
theorem. This theorem states the flux of a vector field through a closed surface is equivalent to
the volume integral of the divergence of the vector field over the volume enclosed by the surface.
It can be represented as ∮

∂Ω(t)
F · ndS =

∫
Ω(t)
∇ · FdV, (A.28)

where F denotes the vector field. Applying the divergence theorem to the r.h.s. integral of Equation
(A.23) gives

−
∫
∂Ω(t)

p(̂ı · n)dS = −
∫

Ω(t)
(∇ · pı̂)dV =

∫
Ω(t)

∂p

∂r
dV. (A.29)

Splitting up the volume integral into integrals over the cross section and the length of the channel
gives

−
∫
∂Ω(t)

p(̂ı · n)dS = −
∫ r2

r1

∫ A(r,t)

0

∂p

∂r
dSdr = −

∫
∆r
A
∂p

∂r
dr, (A.30)

where the surface integral has again been evaluated since the pressure does not vary over the cross
section.

Using the results of Equations (A.24), (A.27) and (A.30), the momentum equation is

d

dt

∫
∆r
ρuAdr + (ρu2A)

∣∣
r2
− (ρu2A)

∣∣
r1

+

∫
∆r
A
∂p

∂r
dr = 0. (A.31)

As before, dividing through by ∆r and taking the limit as ∆r → 0

lim
∆r→0

1

∆r

d

dt

∫
∆r
ρuAdr +

(ρu2A)
∣∣
r2
− (ρu2A)

∣∣
r1

∆r
+

1

∆r

∫
∆r
A
∂p

∂r
dr = 0, (A.32)

gives

(∂ρAu)

∂t
+

(∂ρAu2)

∂r
+A

∂p

∂r
= 0. (A.33)

which is equivalent to

∂ (ρAu)

∂t
+
∂
(
ρAu2 + pA

)
∂r

= p
∂A

∂r
. (A.34)

A.3. Energy. Starting with Equation (A.13), the volume integral is reduced to an integral over
the channel length

d

dt

∫
Ω(t)

ρEdV =
d

dt

∫
∆r
ρA(e+

u2

2
)dr, (A.35)

where the total energy has also been split into specific internal and specific kinetic energy compo-
nents. Next, as was true in the mass and momentum equation derivations, the energy flow into
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and out of the control volume only occurs through the end surfaces. As such, the second integral
in Equation (A.13) is again decomposed into two components∫

∂Ω(t)
ρE(u · n)dS =

∫
∂Ω1(t)

ρ

(
e+

u2

2

)
(u · n1)dS +

∫
∂Ω2(t)

ρ

(
e+

u2

2

)
(u · n2)dS, (A.36)

=

(
ρAu

[
e+

u2

2

])∣∣∣∣
r2

−
(
ρAu

[
e+

u2

2

])∣∣∣∣
r1

. (A.37)

Lastly, the final term appearing in Equation (A.13) can be evaluated again using the divergence
theorem ∫

∂Ω(t)
(T · u)dS = −

∫
∂Ω(t)

p(n · u)dS, (A.38)

= −
∫

Ω(t)
(∇ · pu)dV, (A.39)

= −
∫

∆r
A(∇ · pu)dr. (A.40)

Focusing on the divergence term appearing inside of the integral, in the quasi-1d approximation,
since pressure only varies along the length of the channel, we find

A (∇ · pu) = A

[
u
∂p

∂r
+ p(∇ · u)

]
, (A.41)

which, by adding and subtracting terms, can be equivalently expressed as

A (∇ · pu) =
∂(pAu)

∂r
− p

[
∂(Au)

∂r
−A(∇ · u)

]
. (A.42)

Next, the divergence of the velocity field is related to the material derivative of the density

∇ · u = −1

ρ

Dρ

Dt
= −1

ρ

(
∂ρ

∂t
+ u

∂ρ

∂r

)
. (A.43)

Substitution of this relationship into Equation (A.42) gives

A (∇ · pu) =
∂(pAu)

∂r
− p

ρ

[
ρ
∂(Au)

∂r
+Au

∂ρ

∂r
+A

∂ρ

∂t

]
, (A.44)

=
∂(pAu)

∂r
− p

ρ

[
∂(ρAu)

∂r
+A

∂ρ

∂t

]
. (A.45)

By Equation (A.21), the final term appearing in the square brackets of Equation (A.45) is equivalent

to −ρ∂A
∂t

and therefore

A (∇ · pu) =
∂(pAu)

∂r
+ p

∂A

∂t
. (A.46)

Combining the results of Equations (A.35), (A.37), (A.40) and (A.46), the energy balance equa-
tion can be written as

d

dt

∫
∆r
ρA(e+

u2

2
)dr+

(
ρAu

[
e+

u2

2

])∣∣∣∣
r2

−
(
ρAu

[
e+

u2

2

])∣∣∣∣
r1

+

∫
∆r

(
∂(pAu)

∂r
+ p

∂A

∂t

)
dr = 0.

(A.47)
Dividing through by ∆r once again and taking the limit as ∆r goes to zero

∂

∂t

(
ρAe+

ρAu2

2

)
+

∂

∂r

(
ρAue+

ρAu3

2
+ pAu

)
= −p∂A

∂t
. (A.48)
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Appendix B. Isentropic flow

Given the balance law for the energy contained within the channel control volume, it can be
shown that this equation is analogous to Equation (2.3) which states that the flow is isentropic.
First, the first and third terms in the energy equation of System (2.1) are expanded and regrouped
to obtain

ρA

(
∂e

∂t
+ u

∂e

∂r

)
︸ ︷︷ ︸

=de
dt

+e

(
∂(ρA)

∂t
+
∂(ρAu)

∂r

)
︸ ︷︷ ︸

mass =0

+
1

2

∂(ρAu2)

∂t
+

1

2

∂ρAu3

∂r
+
∂pAu

∂r
+ p

∂A

∂t
= 0, (B.1)

⇒ ρA
de

dt
+

1

2

∂(ρAu2)

∂t
+

1

2

∂ρAu3

∂r
+
∂pAu

∂r
+ p

∂A

∂t
= 0. (B.2)

Next, the second, third and fourth terms are similarly expanded and rearranged giving

ρA
de

dt
+
u2

2

(
∂(ρA)

∂t
+
∂(ρAu)

∂r

)
︸ ︷︷ ︸

mass =0

+Auρ

(
∂u

∂t
+ u

∂u

∂r
+

1

ρ

∂p

∂r

)
︸ ︷︷ ︸

momentum =0

+p

(
∂(Au)

∂r
+
∂A

∂t

)
= 0, (B.3)

⇒ ρA
de

dt
+ p

(
∂(Au)

∂r
+
∂A

∂t

)
= 0. (B.4)

From the Equation (A.21), it can be shown

− A

ρ

dρ

dt
=
∂(Au)

∂r
+
∂A

∂t
. (B.5)

Substituting this result above yields

de

dt
− p

ρ2

dρ

dt
= 0. (B.6)

From the Gibbs equation

de = Tds+
p

ρ2
dρ, (B.7)

it is inferred

T
ds

dt
=

de

dt
− p

ρ2

dρ

dt
. (B.8)

Substituting this final result into (B.6) results in

ds

dt
= 0. (B.9)

Hence the flow is isentropic.

Appendix C. Solving the determining equations

The constraints between the group parameters, in addition to any further restrictions required for
the admissibility of symmetry transformations can be determined by solving the set of determining
equations, Equations (3.20). For example purposes, the first prolongation of the group generator
is applied to the continuity equation appearing in System (2.1).
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C.1. Mass. Starting with the continuity equation, expanding the partial derivatives and applying
the first prolongation of the group generator specified in Equation (3.27) gives

pr(1)V F1

∣∣∣
F1=0

= 0⇒ pr(1)V

(
∂ρA

∂t
+
∂ρAu

∂r

)∣∣∣∣
F1=0

= 0, (C.1)

0 = [a1r (ρtAr + ρAtr + ρrAru+ ρArru+ ρArur) ,

+ a2t (ρtAt + ρAtt + ρrAtu+ ρArtu+ ρAtur) ,

+ a3ρ (At +Aru+Aur) + a4u (ρrA+ ρAr) ,

+ (a3 − a1)ρr (Au) + (a3 − a2)ρt (A) + (a4 − a1)ur (ρA)]|F1=0.

At this point, the equation is factored in powers of ρ and the group parameters to get

0 = ρ[a1(rArt + ruArr + rurAr − urA)

+ a2(tAtt + tuArt + turAt)

+ a3(At + uAr + turAt)

+ a4(uAr + urA)]

+ [a1(ρtrAr + ρrruAr − ρruA)

+ a2(ρttAt + ρrtuAt − ρtA)

+ a3(ρruA+ ρtA)

+ a4ρruA]. (C.2)

Next, the result must be evaluated at F1=0 which from the continuity equation can be imposed by
substituting for the density using

ρ = − A(ρt + uρr)

At + uAr + urA
. (C.3)

The substitution gives

0 = + (At + uAr +Aur)[a1(ρtrAr + ρrruAr − ρruA)

+ a2(ρttAt + ρrtuAt − ρtA)

+ a3(ρruA+ ρtA)

+ a4ρruA],

−A(ρt + uρr)[a1(rArt + ruArr + rurAr − urA)

+ a2(tAtt + tuArt + turAt)

+ a3(At + uAr + turAt)

+ a4(uAr + urA)]. (C.4)

For the purposes of the symmetry analysis, the velocity u can be regarded as an independent
variable. Consequently, Equation (C.4) can be treated as a polynomial in u. To be satisfied for all
u, the coefficients of the polynomial must be zero. Separating the result accordingly yields three
new PDEs

0 =a1[rAArr − rA2
r +AAr] + a2[tAArt − tArAt], (C.5)

0 =a1[ρt(rA
2
r − rAArr) + ρr(rArAt − rAArt −AAt)]

+ a2[ρt(tArAt −AAr − tAArt) + ρr(tAt2 − tAAtt)]
+ a4[ρrAAt − ρtAAr], (C.6)

0 =a1[urA
2 − tAArt + rArAt]− a2[urA

2 + tAAtt +AA+ t− tA2
t ]− a4urA

2. (C.7)
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Equation (C.5) corresponds to the first constraint on the cross-sectional area given by Equation
(3.30). Equation (C.7) can be further treated as a polynomial in ur leading to

a1 − a2 = a4, (C.8)

a1[rAArt − rArAt] + a2[tAAtt − tAt2 +AAt] = 0. (C.9)

Equation (C.8) is the first constraint derived between the group parameters and Equation (C.9)
corresponds to the second constraint on the area function given by Equation (3.31). Finally,
Equation (C.6) can be treated as a polynomial in ρr leading to the following two equations

a1[rA2
r − aAArr] + a2[tArAt −AAr − tAArt] = a4AAr = 0, (C.10)

a1[rArAt − rAArt −AAt] + a2[tA2
t − tAAtt] + a4AAt = 0. (C.11)

Substituting the result of Equation (C.8) then recovers the two constraints on the cross-sectional
area that have already been determined. The determining equation is therefore solved for the
continuity equation. Corresponding equations for the momentum and the energy equations are
solved analogously leading to the results of Equations (3.29) and (3.32).

Appendix D. Symmetry reduction

D.1. Mass. Beginning with the continuity equation of System (2.1) and expanding out the partial
derivatives of the area function gives

A

[
∂ρ

∂t
+
∂(ρu)

∂r

]
+Atρ+Arρu = 0. (D.1)

Substituting Equations (3.43) and (3.44) for ρ and u gives

rδ2
{
A

[
∂ρ̂

∂t
+ rδ1

{
1

r
(δ1 + δ2)ρ̂û+

∂(ρ̂û)

∂r

}]
+Atρ̂+Arr

δ1 ρ̂û

}
= 0. (D.2)

Finally, dividing out the rδ2 factor, substituting for the partial derivatives of the functions f̂(ξ)
using Equations (3.46) and (3.47), and multiplying through by t gives the expression presented in
Equation (3.48).

D.2. Momentum. Similarly, expanding the momentum equation from System (2.1) yields

A

[
∂(ρu)

∂t
+
∂(ρu2)

∂r
+
∂p

∂r

]
+Atρu+Arρu

2. (D.3)

Substituting Equations (3.43)–(3.45) for ρ, u and p yields

rδ1+δ2

{
A

[
∂(ρ̂û)

∂t
+ rδ1

{
(2δ1 + δ2)

1

r

(
ρ̂û2 + p̂

)
+

(
∂(ρ̂û2)

∂r
+
∂p̂

∂r

)}]

+ û
(
Atρ̂+Arr

δ1 ρ̂û
)}

= 0. (D.4)

Next, dropping the factor of rδ1+δ2 , substituting for the partial derivatives of functions of the form
f̂(ξ) and multiplying though by a factor of t gives

A

[
−ξ ∂(ρ̂û)

∂ξ
+ rδ1

t

r

{
(2δ1 + δ2)

(
ρ̂û2 + p̂

)
+ (1− δ1)ξ

(
∂(ρ̂û2)

∂ξ
+
∂p̂

∂ξ

)}]
+ û

(
Attρ̂+Artr

δ1 ρ̂û
)

= 0. (D.5)
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This equation can be re-expressed in the form

A

[
−ξρ̂∂û

∂ξ
+
t

r
rδ1
{
δ1ρ̂û

2 + (2δ1 + δ2)p̂+ (1− δ1)ξ
∂p̂

∂ξ
+ (1− δ1)ξρ̂û

∂û

∂ξ

}]
+ û {mass}︸ ︷︷ ︸

=0

= 0, (D.6)

where {mass} is given by Equation (3.48). Finally, dropping the factor A gives Equation (3.49).

D.3. Energy. In the final reduction, the energy equation of System (2.1) is expanded to get

A

[
e
∂ρ

∂t
+ ρ

{
ep
∂p

∂t
+ eρ

∂ρ

∂t

}
+ e

∂(ρu)

∂r
+ ρu

{
ep
∂p

∂r
+ eρ

∂ρ

∂r

}
+
∂(pu)

∂r

+
1

2

{
∂(ρu2)

∂t
+
∂(ρu3)

∂r

}]
+At

[
ρe+

ρu2

2
+ p

]
+Ar

[
ρue+ pu+

ρu3

2

]
= 0. (D.7)

Again, substituting Equations (3.43)–(3.45) for ρ, u and p

rδ2

{
A

[
e
∂ρ̂

∂t
+ rδ2 ρ̂

{
epr

2δ1 ∂p̂

∂t
+ eρ

∂ρ̂

∂t

}
+ rδ1

{
e(δ1 + δ2)

1

r
ρ̂û+ e

∂(ρ̂û)

∂r

+ ρ̂û

(
epr

2δ1+δ2

(
1

r
(2δ1 + δ2)p̂+

∂p̂

∂r

)
+ eρr

δ2

(
δ2

r
ρ̂+

∂ρ̂

∂r

))

+ r2δ1

(
1

r
(3δ1 + δ2)p̂û+

∂(p̂û)

∂r

)

+
1

2

(
rδ1

∂(ρ̂û2)

∂t
+ r2δ1

(
1

r
(3δ1 + δ2)ρ̂û3 +

∂(ρ̂û3)

∂r

))}]

+At

[
ρ̂e+ r2δ1

(
ρ̂û2

2
+ p̂

)]
+Ar

[
rδ1 ρ̂ûe+ r3δ1

{
p̂û+

ρ̂û3

2

}]}
= 0. (D.8)

Dropping the rδ2 factor, substituting Equations (3.46) and (3.47) for the partial derivatives and
multiplying through by t

A

[
− eξ ∂ρ̂

∂ξ
− rδ2 ρ̂

{
epr

2δ1ξ
∂p̂

∂ξ
+ eρξ

∂ρ̂

∂ξ

}
+ rδ1

t

r

{
e(δ1 + δ2)ρ̂û+ e(1− δ1)ξ

∂(ρ̂û)

∂ξ

+ ρ̂û

(
epr

2δ1+δ2

(
(2δ1 + δ2)p̂+ (1− δ1)ξ

∂p̂

∂ξ

)
+ eρr

δ2

(
δ2ρ̂+ (1− δ1)ξ

∂ρ̂

∂ξ

))

+ r2δ1

(
(3δ1 + δ2)p̂û+ (1− δ1)ξ

∂(p̂û)

∂ξ

)

+
r2δ1

2

(
(3δ1 + δ2)ρ̂û3 + (1− δ1)ξ

∂(ρ̂û3)

∂ξ

)}
− r2δ1

2
ξ
∂(ρ̂û2)

∂ξ

]

+Att

[
ρ̂e+ r2δ1

(
ρ̂û2

2
+ p̂

)]
+Art

[
rδ1 ρ̂ûe+ r3δ1

{
p̂û+

ρ̂û3

2

}]
= 0. (D.9)

This equation can be re-expressed in the form(
r2δ1 û

2

2
+ e

)
{mass}︸ ︷︷ ︸

=0

+ r2δ1Aû {momentum}︸ ︷︷ ︸
=0

+ {energy} . (D.10)
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where {mass}, {momentum} and {energy} are given by Equations (3.48)–(3.50) respectively.
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